平成 26 年度研究助成金及び長瀬研究振興賞受賞者一覧表

(敬称略:50 音順)

	氏名	所属	 役職	研究テーマ
	1 21			
生 化 学	青井 議輝	広島大学サステナブル・ディベロ	テニュアトラ	眠っている微生物を起こす異種間相互作用の解明
		ップメント実践研究センター	ック講師	一難培養性微生物の培養化一
	阿部 洋	北海道大学大学院薬学研究院	准教授	環状 RNA を用いたタンパク質翻訳現象の理解と利用
	今泉 和則	広島大学大学院医歯薬保健学研 究院	教授	小胞体ストレス応答機構の制御による新規癌治療法
				の開発
	岩崎俊雄	日本医科大学医学部	講師	グルコース感受性に関わる細菌型 mitoNEET の生体
				内レドックス制御システム解析
	上田 宏	東京工業大学資源化学研究所	教授	天然抗体を用いた蛍光免疫測定素子構築法の開発
	岡部 聡	北海道大学大学院工学研究院	教授	 嫌気性アンモニア酸化細菌の菌体密度依存的活性
				制御機構およびニッチ分化機構の解明
	栗原 達夫	京都大学化学研究所	教授	膜タンパク質の高次構造形成と翻訳後修飾における
				高度不飽和脂肪酸の機能解析
	<i>**</i>		#/ 155	
	後藤 由季子	東京大学大学院薬学系研究科	教授	ウイルス感染に対する防御機構の選択
	齊藤 博英	京都大学 iPS 細胞研究所	特定准 教授	
				人工 RNA ナノシステムを活用した細胞運命制御
	光武 進	佐賀大学農学部	准教授	細胞膜脂質ダイナミズムによる細胞膜機能制御機構
				と疾患発症メカニズムの解明
	三原 久和	東京工業大学大学院生命理工学 研究科	教授	癌細胞や幹細胞の迅速解析用バイオチップの開発
	する研究			
	渡辺 大輔	奈良先端科学技術大学院大学バイオサイエンス研究科	助教	酵母におけるユビキチンシステムを介した有機酸スト
				レス応答機構の解明とその応用
	有機化学	井上 将行	東京大学大学院薬学系研究科	教授
开工 1寸11		· 宋尔八十八十帆来于宋明九代	7人1人	巨人複雑人然物の単制的収集的日成法の開発
上垣外 正己		名古屋大学大学院工学研究科	教授	α-ピネンより誘導されるピノカルボンの精密重合に
				基づく新規バイオベースポリマーの開発
神川憲		大阪府立大学理学系研究科	准教授	遷移金属触媒による不斉炭素-炭素結合生成反応
				を基軸とするキラルな三次元ネットワークの自在構築
草間 博之		学習院大学理学部	教授	光化学的カルベン生成を活用した新規複素環形成
				手法の開発
深瀬浩一		大阪大学大学院理学研究科	教授	フコシルトランスフェラーゼ8の選択的阻害剤の開発
				とがん免疫療法への応用
細谷 孝充		東京医科歯科大学生体材料工学 研究所	教授	多機能性分子プローブ創製技術の革新を目指した異
				種アジド選択的反応の開発
俣野 善博		新潟大学理学部	教授	新規 π 拡張ジアザポルフィリン誘導体の創成と色素
				増感太陽電池への展開